Combining Textual Content and Structure to Improve Dialog Similarity

نویسندگان

  • Ana Paula Appel
  • Paulo Rodrigo Cavalin
  • Marisa Affonso Vasconcelos
  • Claudio S. Pinhanez
چکیده

Chatbots, taking advantage of the success of themessaging apps and recent advances in Artificial Intelligence, have become very popular, from helping business to improve customer services to chatting to users for the sake of conversation and engagement (celebrity or personal bots). However, developing and improving a chatbot requires understanding their data generated by its users. Dialog data has a different nature of a simple question and answering interaction, in which context and temporal properties (turn order) creates a different understanding of such data. In this paper, we propose a novelty metric to compute dialogs’ similarity based not only on the text content but also on the information related to the dialog structure. Our experimental results performed over the Switchboard dataset show that using evidence from both textual content and the dialog structure leads to more accurate results than using each measure in isolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Knowledge Extraction for Information Retrieval

Document retrieval is the task of returning relevant textual resources for a given user query. In this paper, we investigate whether the semantic analysis of the query and the documents, obtained exploiting state-of-the-art Natural Language Processing techniques (e.g., Entity Linking, Frame Detection) and Semantic Web resources (e.g., YAGO, DBpedia), can improve the performances of the traditio...

متن کامل

A Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor

The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...

متن کامل

Dialog Structure Through the Lens of Gender, Gender Environment, and Power

Understanding how the social context of an interaction affects our dialog behavior is of great interest to social scientists who study human behavior, as well as to computer scientists who build automatic methods to infer those social contexts. In this paper, we study the interaction of power, gender, and dialog behavior in organizational interactions. In order to perform this study, we first c...

متن کامل

Discovering Image-Text Associations for Cross-Media Web Information Fusion

The diverse and distributed nature of the information published on the World Wide Web has made it difficult to collate and track information related to specific topics. Whereas most existing work on web information fusion has focused on multiple document summarization, this paper presents a novel approach for discovering associations between images and text segments, which subsequently can be u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07117  شماره 

صفحات  -

تاریخ انتشار 2018